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Correlation Inequalities and the Kosterlitz-Thouless 
Transition for Anisotropic Rotators 
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I give a proof of the Kosterlitz-Thouless transition for sufficiently anisotropic 
(Jz J71 = j .  jy 1 < 2q -  1 (JKT) 1 ) two-dimensional N-component rotators (N 1> 3). 
The method is based on Wells' inequality and is related to mean field Gaussian 
inequalities. 
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1. LOWER B O U N D  A N D  THE KOSTERLITZ-THOULESS 
T R A N S I T I O N  

In a recent paper, (~) Bricmont, Lebowitz, and Pfister prove, among other 
things, the occurrence of the Kosterlitz-Thouless transition for the 
"infinitely" anisotropic (Jz=O, Jx=arv) two-dimensional classical Heisen- 
berg model. The authors use Wells' inequality, (12) which says that a one- 
component classical spin model {~r ,}~ ,  with ferromagnetic couplings 
{J~j}~,j and with single spin distribution not concentrated on a~= 0, 

dr(o-i) # ~(~,) 

has correlation functions bounded below by the correlations of an Ising 
model: 

The scaling factor a 2 is independent of the couplings, and long-range 
order for the Ising model implies long-range order for the model with 
single spin distribution v. 
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Bricmont, Lebowitz, and Pfister ~12) remark that the same comparison 
can be made between two-component rotator models with single spin dis- 
tribution, respectively, 

dr(l<) &o 
and 

6(I<2-I)&o 

Thc classical Heisenberg model has a single spin distribution 

sin 0 &9 &o = dr(sin 0) &o 

and can be considered, for Jz = 0, as a model of plane rotators of random 
lengths {sin #i}i. The occurrence of the Kosterlitz-Thouless transition for 
this model then follows from the results (4) of Fr6hlich and Spencer for unit 
rotators. 

The same remark applies to p(]o[2) models defined on the lattice 2 2, 
when �9 has two components, but the estimates vanish in the continuum 
limit. 

Let us note finally that Wells' inequality does not extend to models 
with more than two components (the Ginibre inequality (s) is a crucial 
ingredient). 

The N-component rotator model on Z a is a model of random unit vec- 
tors ("classical spins") 

S(j) E ~ N, ]S(j)] =1,  jG~_ d 

In order to compare N > 2 with N =  2, we introduce the notation 

S(j) = (~(j), x(j)) e ~ 2  x [ ~ N -  2 ( l ) 

The couplings will satisfy the associated 0 ( 2 ) x  O ( N - 2 )  invariance: the 
0(2) invariance in view of the desired Kosterlitz-Thouless transition, and 
the O(N-2) invariance to simplify the notation. 

The joint probability distribution, or Boltzmann factor, is chosen as 

=Z-Xexp[~(JosinOisinOjcos(~oi-qoj) 

+ / < ,  c o s  a; c o s  a , e ( i )  �9 

x [ I  &oj sin ,.gj(cos O:) x-3  dOj d~(j) (2) 
J 
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where 

i ( j ) = l ~ ( j ) t - 1  ~(j) 

Theorem 1 Let (" "~(N) denote the expectation with respect to (2) 
" / J , K  

and let (.)(j2) denote the analogous expectation for N =  2. Let 

K =  sup ~ ]K(j] 
i J 

and 

yN(K) = sup {y ] ~/~< 1/2 and fs ( 1 - 3 2 - x  2) e(l-7)l l2Kxx N - 3  d x ~ O }  (3) 

Suppose that Jij >~ 0 Vi, j. Then for any index set A (e.g., from 7/dx Z d) we 
have 

(~(k)'~(I))I;7s H (~(k)'~(I)))7~(~) J (4) 
{k,t} ~ A {k,Z} eA 

Moreover: 7N(K) is a decreasing function of both N and K, 

KTN(K)-+ 2 as K--+ oo, V N ~ N  

N = 3 ,  K <~ 2 ~ y3(K) = l/2 

Remork. Theorem 1 proves what is asserted in the abstract. Consider 
an N-component model on a two-dimensional lattice, where each spin is 
coupled with q neighbors, with coupling constants flJ, = flJy for the first 
two components, and in modulus at most flJ~ for each of the remaining 
( N - 2 )  components. Suppose that 

jzjx I < 2 q - I ( J K T ) - 1  

where JKT is the inverse temperature (including fl) at which the Kosterlitz- 
Thouless transition occurs for plane rotators ( N =  2). Then 

];N(qflJz) flJx--:~2q-'JxJzl>JKy as f l ~  

and the correlations of the first two components of the N-component 
rotator are bounded below by the correlations of a plane rotator in the 
Kosterlitz-Thouless phase. 

Note however that for all Jz < Jx = Jy, the correlation functions of the 
z components are expected ~1) to decay exponentially at all temperatures (in 



736 Dunlop 

any dimension). The existence of the Kosterlitz-Thouless phase is also 
expected for all J~ < Jx = Jy and fl sufficiently large. On the contrary, for 
Jz = Jx = Jy, all correlations are expected to decay exponentially (in two 
dimensions). If we accept this last point, our inequalities can be considered 
as mean field bounds for the plane rotator model. Indeed (4) can be written 
a s  

(a(k). a(/)\~2) <~TN(qJ) l ( a ( k )  ' ~( / ) )~ ,~)  /yN(qJ)J (5) 

Since 

7u(qJ)J--. 2q 1 as J ~  

and assuming that the right-hand side of (5) decays exponentially, we con- 
clude 

J K T  ~ 2q 1 

which is the mean field bound. A more natural approach to mean field 
bounds will be described in Section 2. 

Proof of Theorem 1. For A a set of indices from E d and m(.)  a 
function from Z d to 7/, we denote 

(sin ~9)A cos m. q9 =j~A1F] (sin 0j)cos [ ~  m(j)~oj] 

We then have 

, N(N) Z~jU~((sin ~9) A COS m'~p~j. K 

= f  l~df( j)  Z~j~(~)((sin,9) A . )3' c o s  m ~0 J,K(f) 

J 

>~f 1-[ d ~ ( j ) Z ~ ) ( ( s i n  ~9)A COS m'~p )3'j.iK(l)l 
J 

3' = Z~jUx)((sin ~9)A COS m" q~ )s, IK(l)l (6) 

where ( .  >31K(e ) is the expectation with respect to (2) conditioned by given 
values of {i(j)}j.  We use the symbol 3' to indicate that the individual dis- 
tribution 

&oj sin ,gj(cos oaj) N-3 dOj 
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is not isotropic in ~3 (except for N =  3), and that 0j varies only from 0 to 
1r/2. We have 

IK(1)o-I = [K,jt 

and the inequality (6) comes from. (2'6) 
We now have to compare 

( " )31 IK( I  )[ and (./~J\t2) 

and we introduce a joint probability distribution 

Z 1Z'-~ exp ( ~  { Jij[sin 0i sin 0j cos((49 i - q)j) -~- '~ C O S ( ( p ;  - -  ~0 j )  ] 
\ t,j, 

IKol cos ~9, cos ~gj}) + 

x [I dqoj dq~j sin ~gi(cos Oj) N-3 dOj 
J 

Denoting the corresponding expectation by ( ( . ) ) ,  we have 

3' - -  '~]At/2 (COS m- ((sin O)A cos m '  (~0)j,]K(1) I (~)Tj 

= (((sin O)A COS m'  q~ --7 IAI/2 cos m �9 ~0')) 

(7) 

(8) 

In order to apply the method of Wells' inequality, we write 

cos 0i cos ~j = (~' - cos 0~)(~' - cos 9j) + 7' cos ,9i + ~/cos ~gj - ~,2 

The advantage of this formula is that (e.g., 7 ' =  1) the coupling term 

Igol (~' - cos 03(7' - cos 0j) 

now favors Isin 9il = 1, which favors the existence of the Kosterlitz- 
Thouless phase. This is important because coupling terms, as opposed to 
single site terms, must be expanded in most proofs of correlation 
inequalities. 

The idea that a coupling term (here Kucos 0;cos 0j), which is 
unfavorable for some behavior of the model, can sometimes be compen- 
sated for by single site terms [here -Ko(cos  0 i+  cos Oj)] was used by the 
author in Ref. 3 for the gauge invariant Ising model (four-body plaquette 
couplings go against the Lee-Yang theorem) and for the Widom- 
Rowlinson model. 
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We now expand the Boltzmann factor (7) and the integrand in (8) as a 
multinomial with positive coefficients in terms of 

cos(~0i- %) + cos (<  - ~0;) 

s i n  3/+ 71/2 7 '  - -  COS 0 j  

e x p ( 7 ' c o s 0 j ~ .  IKo') 

The integral over {(pj}/and {q~; }/is positive by the Ginibre inequality. The 
remaining integral factorizes over the sites and we only have to show 

~,v2 (a sin 0 + a'yl/2)p(a sin 0 - 0-'71/2)q(7' -- COS 0 )  r 

a = + l  
c~'= •  

x e y'K . . . .  ~ sin O(cos 0 )  N 3 dO >1 0 (9) 

with 

K =  sup ~ ]Kij] 
i / 

and where a and a' have been saved (as redundant variables) from (p and 
~o': a random vector s with an even probability distribution, such as the 
uniform measure on the circle, can be replaced by as with a =  _+1 
(arbitrary weights) and the unchanged distribution for s. The point is that 
the U(1) symmetry cannot be conveniently factorized over sites, whereas it 
is possible, and useful, to keep the spin flip symmetry, included in the U(1 ) 
symmetry, when factorizing over sites. 

We may now suppose p >~ q, p - q  even, so that 

E (a sin 0 + a'71/2) p q 
a = •  
a ' = •  

can be expanded with positive coefficients, in powers of sin 2 3, and a for- 
tiori also in powers of sin 2 3 - 7 .  Condition (9) with 

y ' =  (1 - 7 )  1/2 

then reduces to the condition 

fo ~/2 (sin 2 O -  ?)n e(l-  ~W2,Voos o sin 0(cos 0 )  N - 3  dO ~/0 (lO) 
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Taking n = l  and n = o o  gives hypothesis (3) in Theorem l. 
Monotonicity of 7N(K) in N and K can be considered as a correlation 
inequality in the measure (10) (take the integrand with n = 0): s i n 2 0 - 7  is 
a decreasing function of cos ~9, whereas K and N come in front of increasing 
functions of cos 0. Therefore (s) the normalized expectation 

( s i n  2 0 - - • ) K ,  N 

is a decreasing function of K and N. 
To see that (10) is also satisfied for 1 < n <  oo, we write it as follows 

(n odd, 0 < 7 ~< 1/2): 

-'/ tn(g./'K(1-y t)l/'-(1 __y_ t)N/2 2 

- ~9(y - t) e/~(1 ' +/)1/2( 1 - ~) ~[- t) N/2 - 2) dt 

where 

1, if t < y  
O ( ? ' - t ) =  0, if t > 7  

The integrand is positive for t > 7 and changes sign at most once in 
]0, 1 - 7], say in r. It follows that the integral with n e N is bigger than or 
equal to ~ ' -  1 times the integral with n = 1, and is therefore positive. 

This concludes the proof of Theorem 1. | 

2. U P P E R  B O U N D :  M E A N  FIELD G A U S S I A N  I N E Q U A L I T I E S  

T h e o r e m  2. Let ( \ ( N )  denote the expectation with respect to (2). �9 /~J,K 
Suppose that Kij >~ 0 and Ji~ = 0 Vi, j and that 

sup ~ l J/j[ < N 
i J 

Let ( . ) G  be the two component 0(2)  symmetric massive Gaussian model 
of inverse covariance 

(C l)0.= -tJ•l + N6i, y 

where 6i.j is the Kronecker symbol (e.g., on 2U x Za). 
For  any index set A (e.g., from 7/ax ZJ), we have 

17] (~(k).~(t)) < []  
{k,l}eA / J , K  {k, l}eA 

\ 
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Remarks. (i) Theorem 2 was proved by Tasaki ~ using a high- 
temperature expansion. See also Refs. 7-10 for previous results and further 
references. 

(ii) The condition J i ;=0  is not essential, but simplifies the for- 
mulation. 

(iii) Theorem 2 can be extended to include an external field and give 
mean field upper bounds on the magnetization. 

k e m m a  1 Let ( .  ",(N) denote the expectation with respect to (2). �9 / J , K  

Suppose that K o. >10 Vi, j. Then 

{k,l} e a  {k,l} E A  / [ J I , 0  

Proof of Lemma I. Lemma 1 is a variant of Theorem 6 in Ref. 7, 
where Pearce decomposes ~U = ~ >( ~N-- 1, I choose ~N = ~2 X ~N--2 for 
technical convenience, but mean field bounds should be the same in both 
ways. The proof of Lemma 1 is essentially identical to Pearce's. 

Proof of Theorem 2. We first use Lemma 1 and then consider, for 
Jo >>" O, the joint probability distribution 

Z-1Z' - '  exp {~  Ju[sin 3isin Ojcos(9i-cpj)+ pip/cos(~o;-~pj)]} 

x l-[ sin Oi(cos Oi )  N 3 dO~ dq9 i e -N/2 P2pi dpi &o; 
i 

Denoting the corresponding expectation by ( ( . ) ) ,  we should prove 

(( 1-[ (p~p, cos(~p'k-qo',)-sin 3ksin 3,cos(~pk-~p,)))) >0 
{k,t}~a 

We expand the integrand and the Boltzmann factor in terms of 

p~ + sin O~ 

cos  m �9 ~o +_ cos  m �9 q~' 

and the problem reduces to proving, for all p and q, 

e n/2 
~ J 0 ,  s in  O(c~  ' 9 ) N -  3 d'9 

;o  " 
x e-N/2p2pdp(ap+a'sin~)P(ap--a'sin~)q ) 0 (11) 
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where ~ and a '  are again redundant  variables which were added to ~0 and 
~'. By spin flip symmetry,  we may  suppose p >~ q and p - q even, so that 

(ap + ~' sin 0) p q = (p2 + sin 2 0 + 2aa'p sin 0) p-el2 

and (11) now reduces to 

~-,v2 fo ~ sin 0(cos 0) N- 3 dO e-Up2/2p dp(p 2 -  sin 2 0) n 
~0 

x (p2 + sin 2 0)U(p2 sin 2 0)~ ~ 0 

The Gaussian measure was chosen so that the integral vanishes for 
n = 1, u = v = 0. The only difficulty is to prove that  this is the most  restric- 
tive case. For  this purpose,  we introduce the change of variables 

tp ~ -  sin 2 01 = t 

cos 2 0 = y 

and the integral now reads (n odd)  

d t t  n d y y N / 2 - - 2 e - - N / 2 (  t + l  y ) ( t + 2 _ 2 y ) U ( t +  1 - y ) V ( 1 - y )  ~ 

- 0(1 - t )  ~max{0,1 - t }  dy yN/Z--2e--N/2( t+  I --y)( __ t + 2 - 2y)" 
"~0 

x( - t+  l -  yl~ y) v] ~ o (12) 

F o r n = l  a n d u = v = 0 ,  w e h a v e  

;o dt t dy yN/2-2e N(,+ I y)/2 

- 0 ( l - t )  dyyN/2-2e N(-- I+  1 y)/2 ~'~-O 

k e m r n a  2. Let 

IN(S ) =- fs dy yN/2--2eN/2y 

and 

fN(S) = N(1 -- s) + log IN(S ) - -  log IN( 1 ) 

The function fN(S) vanishes at most  once in ]0, 1 [. 

(13) 
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Proof of Lemma 2. We compute 

N f~(s)= --IN(S)--2 sN/2-- 3eN/2s IsN/2 leN/2S--Iu(s) (N--  2 +-~ S) ] 

The bracket equals 

( ) S N/2-1  - - 1  -'~ ~ (N/2)PsN/2 i + p  N/2-2 
p=l P! 1 N / 2 - 1 + p  N / 2 P z + p  

(14) 

which is positive term by term for N~>4. In this case the function fu(S) is 
concave on ]0, 1 [ and vanishes at s = 1, which implies the lemma. 

For  N = 3 ,  the sum from p =  1 to oo in (14) is negative term by term. 
It follows that f~'(s) vanishes at most once in ]0, 1 [. We now remark that 
f3(s) is negative for s ~ 0 and positive for s--* 1. 

The number of zeros in ]0, 1 [ must therefore be odd. With only one 
inflexion point, there can be only one zero, which concludes the proof of 
the lemma. | 

Proof of Theorem 2. The bracket in (13) is positive for t~> 1, and 
zero at t = 0. Lemma 2 implies that it vanishes exactly once in ]0, 1 ], say in 
tN. This implies, for all t I < o(3, 

dt t dy yN/e-2e-N(t+ I -y)/2 

fft  
f f  t' 2 e N(--t' + 1 y')/2 < dr' t'0(1 - t') dy' y,N/2- 

From this we conclude that we can find a diffeomorphism between the 
integration domains 

y' = y '( t ,  y)  = E1 -- t'(t, y)] y 
(15) 

t ' =  t'(t, y)  

with 

t'(t, y)<~t (16) 

and 

tyU/2- 2 e N(t+ 1 y)/2 = (dt'/dt) t'(dy'/dy) y'N/2-- 2e--N(--t' + 1--y')/2 
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If  we n o w  p u t  back  in to  (13) the factors  

t" ~ ( t + 2 - 2 y ) " ( t + l - y ) V ( 1 - y )  ~ 

a n d  

t . . . .  ' ( - - t ' + 2 - - 2 y ' ) " ( - - t ' +  1 - -  y ' ) ~ ( 1  - -  y ' ) ~ '  

the des i red inequa l i t i e s  (12) fol low f rom the inequa l i t i e s  

t ~ t '  

t + 2 - 2 y ~ >  - t ' +  2 - 2 y '  

( t+  1 - y ) ( 1  - y ) ~ >  ( - c +  1 - y')(1 - y ' )  

which  are easily checked  f rom (15), (16). 
This  conc ludes  the  p r o o f  of T h e o r e m  2. | 
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